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Preface

Do you remember the first program you wrote? I remember mine. It was a little graphics program I wrote on
an early PC. I started programming later than most of my friends. Sure, I'd seen computers when I was a kid.
I remember being really impressed by a minicomputer I once saw in an office, but for years I never had a
chance to even sit at a computer. Later, when I was a teenager, some friends of mine bought a couple of the
first TRS-80s. I was interested, but I was actually a bit apprehensive, too. I knew that if I started to play with
computers, I'd get sucked into it. It just looked too cool. I don't know why I knew myself so well, but I held
back. Later, in college, a roommate of mine had a computer, and I bought a C compiler so that I could teach
myself programming. Then it began. I stayed up night after night trying things out, poring through the source
code of the emacs editor that came with the compiler. It was addictive, it was challenging, and I loved it.

I hope you've had experiences like thismdjust the raw joy of making things work on a computer. Nearly
every programmer I ask has. That joy is part of what got us into this work, but where is it day to day?

A few years ago, I gave my friend Erik Meade a call after I'd finished work one night. I knew that Erik had
just started a consulting gig with a new team, so I asked him, "How are they doing?" He said, "They're
writing legacy code, man." That was one of the few times in my life when I was sucker-punched by a
coworker's statement. I felt it right in my gut. Erik had given words to the precise feeling that I often get
when I visit teams for the first time. They are trying very hard, but at the end of the day, because of schedule
pressure, the weight of history, or a lack of any better code to compare their efforts to, many people are
writing legacy code.

What is legacy code? I've used the term without defining it. Let's look at the strict definition: Legacy code is
code that we've gotten from someone else. Maybe our company acquired code from another company;
maybe people on the original team moved on to other projects. Legacy code is somebody else's code. But in
programmer-speak, the term means much more than that. The term legacy code has taken on more shades of
meaning and more weight over time.

What do you think about when you hear the term legacy code? If you are at all like me, you think of tangled,
unintelligible structure, code that you have to change but don't really understand. You think of sleepless
nights trying to add in features that should be easy to add, and you think of demoralization, the sense that
everyone on the team is so sick of a code base that it seems beyond care, the sort of code that you just wish
would die. Part of you feels bad for even thinking about making it better. It seems unworthy of your efforts.
That definition of legacy code has nothing to do with who wrote it. Code can degrade in many ways, and
many of them have nothing to do with whether the code came from another team.



In the industry, legacy code is often used as a slang term for difficult-to-change code that we don't
understand. But over years of working with teams, helping them get past serious code problems, I've arrived
at a different definition.

To me, legacy code is simply code without tests. I've gotten some grief for this definition. What do tests have
to do with whether code is bad? To me, the answer is straightforward, and it is a point that I elaborate
throughout the book:

Code without tests is bad code. It doesn't matter how well written it is; it doesn't matter how pretty or object-
oriented or well-encapsulated it is. With tests, we can change the behavior of our code quickly and
verifiably. Without them, we really don't know if our code is getting better or worse.

You might think that this is severe. What about clean code? If a code base is very clean and well structured,
isn't that enough? Well, make no mistake. I love clean code. I love it more than most people I know, but
while clean code is good, it's not enough. Teams take serious chances when they try to make large changes
without tests. It is like doing aerial gymnastics without a net. It requires incredible skill and a clear
understanding of what can happen at every step. Knowing precisely what will happen if you change a couple
of variables is often like knowing whether another gymnast is going to catch your arms after you come out of
a somersault. If you are on a team with code that clear, you are in a better position than most programmers.
In my work, I've noticed that teams with that degree of clarity in all of their code are rare. They seem like a
statistical anomaly. And, you know what? If they don't have supporting tests, their code changes still appear
to be slower than those of teams that do.

Yes, teams do get better and start to write clearer code, but it takes a long time for older code to get clearer.
In many cases, it will never happen completely. Because of this, I have no problem defining legacy code as
code without tests. It is a good working definition, and it points to a solution.

I've been talking about tests quite a bit so far, but this book is not about testing. This book is about being able
to confidently make changes in any code base. In the following chapters, I describe techniques that you can
use to understand code, get it under test, refactor it, and add features.

One thing that you will notice as you read this book is that it is not a book about pretty code. The examples
that I use in the book are fabricated because I work under nondisclosure agreements with clients. But in
many of the examples, I've tried to preserve the spirit of code that I've seen in the field. I won't say that the
examples are always representative. There certainly are oases of great code out there, but, frankly, there are
also pieces of code that are far worse than anything I can use as an example in this book. Aside from client
confidentiality, I simply couldn't put code like that in this book without boring you to tears and burying
important points in a morass of detail. As a result, many of the examples are relatively brief. If you look at
one of them and think "No, he doesn't understandmdmy methods are much larger than that and much worse,"
please look at the advice that I am giving at face value and see if it applies, even if the example seems
simpler.

The techniques here have been tested on substantially large pieces of code. It is just a limitation of the book
format that makes examples smaller. In particular, when you see ellipses (el) in a code fragment like this,
you can read them as "insert 500 lines of ugly code here":

m_pDispatcher->register(listener);...m_nMargins++;

If this book is not about pretty code, it is even less about pretty design. Good design should be a goal for all
of us, but in legacy code, it is something that we arrive at in discrete steps. In some of the chapters, I describe
ways of adding new code to existing code bases and show how to add it with good design principles in mind.



You can start to grow areas of very good high-quality code in legacy code bases, but don't be surprised if
some of the steps you take to make changes involve making some code slightly uglier. This work is like
surgery. We have to make incisions, and we have to move through the guts and suspend some aesthetic
judgment. Could this patient's major organs and viscera be better than they are? Yes. So do we just forget
about his immediate problem, sew him up again, and tell him to eat right and train for a marathon? We could,
but what we really need to do is take the patient as he is, fix what's wrong, and move him to a healthier state.
He might never become an Olympic athlete, but we can't let "best" be the enemy of "better." Code bases can
become healthier and easier to work in. When a patient feels a little better, often that is the time when you
can help him make commitments to a healthier life style. That is what we are shooting for with legacy code.
We are trying to get to the point at which we are used to ease; we expect it and actively attempt to make code
change easier. When we can sustain that sense on a team, design gets better.

The techniques I describe are ones that I've discovered and learned with coworkers and clients over the
course of years working with clients to try to establish control over unruly code bases. I got into this legacy
code emphasis accidentally. When I first started working with Object Mentor, the bulk of my work involved
helping teams with serious problems develop their skills and interactions to the point that they could
regularly deliver quality code. We often used Extreme Programming practices to help teams take control of
their work, collaborate intensively, and deliver. I often feel that Extreme Programming is less a way to
develop software than it is a way to make a well-jelled work team that just happens to deliver great software
every two weeks.

From the beginning, though, there was a problem. Many of the first XP projects were "greenfield" projects.
The clients I was seeing had significantly large code bases, and they were in trouble. They needed some way
to get control of their work and start to deliver. Over time, I found that I was doing the same things over and
over again with clients. This sense culminated in some work I was doing with a team in the financial
industry. Before I'd arrived, they'd realized that unit testing was a great thing, but the tests that they were
executing were full scenario tests that made multiple trips to a database and exercised large chunks of code.
The tests were hard to write, and the team didn't run them very often because they took so long to run. As I
sat down with them to break dependencies and get smaller chunks of code under test, I had a terrible sense of
deasjaag vu. It seemed that I was doing this sort of work with every team I met, and it was the sort of thing
that no one really wanted to think about. It was just the grunge work that you do when you want to start
working with your code in a controlled way, if you know how to do it. I decided then that it was worth really
reflecting on how we were solving these problems and writing them down so that teams could get a leg up
and start to make their code bases easier to live in.

A note about the examples: I've used examples in several different programming languages. The bulk of the
examples are written in Java, C++, and C. I picked Java because it is a very common language, and I
included C++ because it presents some special challenges in a legacy environment. I picked C because it
highlights many of the problems that come up in procedural legacy code. Among them, these languages
cover much of the spectrum of concerns that arise in legacy code. However, if the languages you using are
not covered in the examples, take a look at them anyway. Many of the techniques that I cover can be used in
other languages, such as Delphi, Visual Basic, COBOL, and FORTRAN.

I hope that you find the techniques in this book helpful and that they allow you to get back to what is fun
about programming. Programming can be very rewarding and enjoyable work. If you don't feel that in your
day-to-day work, I hope that the techniques I offer you in this book help you find it and grow it on your
team.
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Preface

Do you remember the first program you wrote? I remember mine. It was a little graphics program I wrote on
an early PC. I started programming later than most of my friends. Sure, I'd seen computers when I was a kid.
I remember being really impressed by a minicomputer I once saw in an office, but for years I never had a
chance to even sit at a computer. Later, when I was a teenager, some friends of mine bought a couple of the
first TRS-80s. I was interested, but I was actually a bit apprehensive, too. I knew that if I started to play with
computers, I'd get sucked into it. It just looked too cool. I don't know why I knew myself so well, but I held
back. Later, in college, a roommate of mine had a computer, and I bought a C compiler so that I could teach
myself programming. Then it began. I stayed up night after night trying things out, poring through the source
code of the emacs editor that came with the compiler. It was addictive, it was challenging, and I loved it.

I hope you've had experiences like thismdjust the raw joy of making things work on a computer. Nearly
every programmer I ask has. That joy is part of what got us into this work, but where is it day to day?

A few years ago, I gave my friend Erik Meade a call after I'd finished work one night. I knew that Erik had
just started a consulting gig with a new team, so I asked him, "How are they doing?" He said, "They're
writing legacy code, man." That was one of the few times in my life when I was sucker-punched by a
coworker's statement. I felt it right in my gut. Erik had given words to the precise feeling that I often get
when I visit teams for the first time. They are trying very hard, but at the end of the day, because of schedule
pressure, the weight of history, or a lack of any better code to compare their efforts to, many people are
writing legacy code.



What is legacy code? I've used the term without defining it. Let's look at the strict definition: Legacy code is
code that we've gotten from someone else. Maybe our company acquired code from another company;
maybe people on the original team moved on to other projects. Legacy code is somebody else's code. But in
programmer-speak, the term means much more than that. The term legacy code has taken on more shades of
meaning and more weight over time.

What do you think about when you hear the term legacy code? If you are at all like me, you think of tangled,
unintelligible structure, code that you have to change but don't really understand. You think of sleepless
nights trying to add in features that should be easy to add, and you think of demoralization, the sense that
everyone on the team is so sick of a code base that it seems beyond care, the sort of code that you just wish
would die. Part of you feels bad for even thinking about making it better. It seems unworthy of your efforts.
That definition of legacy code has nothing to do with who wrote it. Code can degrade in many ways, and
many of them have nothing to do with whether the code came from another team.

In the industry, legacy code is often used as a slang term for difficult-to-change code that we don't
understand. But over years of working with teams, helping them get past serious code problems, I've arrived
at a different definition.

To me, legacy code is simply code without tests. I've gotten some grief for this definition. What do tests have
to do with whether code is bad? To me, the answer is straightforward, and it is a point that I elaborate
throughout the book:

Code without tests is bad code. It doesn't matter how well written it is; it doesn't matter how pretty or object-
oriented or well-encapsulated it is. With tests, we can change the behavior of our code quickly and
verifiably. Without them, we really don't know if our code is getting better or worse.

You might think that this is severe. What about clean code? If a code base is very clean and well structured,
isn't that enough? Well, make no mistake. I love clean code. I love it more than most people I know, but
while clean code is good, it's not enough. Teams take serious chances when they try to make large changes
without tests. It is like doing aerial gymnastics without a net. It requires incredible skill and a clear
understanding of what can happen at every step. Knowing precisely what will happen if you change a couple
of variables is often like knowing whether another gymnast is going to catch your arms after you come out of
a somersault. If you are on a team with code that clear, you are in a better position than most programmers.
In my work, I've noticed that teams with that degree of clarity in all of their code are rare. They seem like a
statistical anomaly. And, you know what? If they don't have supporting tests, their code changes still appear
to be slower than those of teams that do.

Yes, teams do get better and start to write clearer code, but it takes a long time for older code to get clearer.
In many cases, it will never happen completely. Because of this, I have no problem defining legacy code as
code without tests. It is a good working definition, and it points to a solution.

I've been talking about tests quite a bit so far, but this book is not about testing. This book is about being able
to confidently make changes in any code base. In the following chapters, I describe techniques that you can
use to understand code, get it under test, refactor it, and add features.

One thing that you will notice as you read this book is that it is not a book about pretty code. The examples
that I use in the book are fabricated because I work under nondisclosure agreements with clients. But in
many of the examples, I've tried to preserve the spirit of code that I've seen in the field. I won't say that the
examples are always representative. There certainly are oases of great code out there, but, frankly, there are
also pieces of code that are far worse than anything I can use as an example in this book. Aside from client
confidentiality, I simply couldn't put code like that in this book without boring you to tears and burying



important points in a morass of detail. As a result, many of the examples are relatively brief. If you look at
one of them and think "No, he doesn't understandmdmy methods are much larger than that and much worse,"
please look at the advice that I am giving at face value and see if it applies, even if the example seems
simpler.

The techniques here have been tested on substantially large pieces of code. It is just a limitation of the book
format that makes examples smaller. In particular, when you see ellipses (el) in a code fragment like this,
you can read them as "insert 500 lines of ugly code here":

m_pDispatcher->register(listener);...m_nMargins++;

If this book is not about pretty code, it is even less about pretty design. Good design should be a goal for all
of us, but in legacy code, it is something that we arrive at in discrete steps. In some of the chapters, I describe
ways of adding new code to existing code bases and show how to add it with good design principles in mind.
You can start to grow areas of very good high-quality code in legacy code bases, but don't be surprised if
some of the steps you take to make changes involve making some code slightly uglier. This work is like
surgery. We have to make incisions, and we have to move through the guts and suspend some aesthetic
judgment. Could this patient's major organs and viscera be better than they are? Yes. So do we just forget
about his immediate problem, sew him up again, and tell him to eat right and train for a marathon? We could,
but what we really need to do is take the patient as he is, fix what's wrong, and move him to a healthier state.
He might never become an Olympic athlete, but we can't let "best" be the enemy of "better." Code bases can
become healthier and easier to work in. When a patient feels a little better, often that is the time when you
can help him make commitments to a healthier life style. That is what we are shooting for with legacy code.
We are trying to get to the point at which we are used to ease; we expect it and actively attempt to make code
change easier. When we can sustain that sense on a team, design gets better.

The techniques I describe are ones that I've discovered and learned with coworkers and clients over the
course of years working with clients to try to establish control over unruly code bases. I got into this legacy
code emphasis accidentally. When I first started working with Object Mentor, the bulk of my work involved
helping teams with serious problems develop their skills and interactions to the point that they could
regularly deliver quality code. We often used Extreme Programming practices to help teams take control of
their work, collaborate intensively, and deliver. I often feel that Extreme Programming is less a way to
develop software than it is a way to make a well-jelled work team that just happens to deliver great software
every two weeks.

From the beginning, though, there was a problem. Many of the first XP projects were "greenfield" projects.
The clients I was seeing had significantly large code bases, and they were in trouble. They needed some way
to get control of their work and start to deliver. Over time, I found that I was doing the same things over and
over again with clients. This sense culminated in some work I was doing with a team in the financial
industry. Before I'd arrived, they'd realized that unit testing was a great thing, but the tests that they were
executing were full scenario tests that made multiple trips to a database and exercised large chunks of code.
The tests were hard to write, and the team didn't run them very often because they took so long to run. As I
sat down with them to break dependencies and get smaller chunks of code under test, I had a terrible sense of
deasjaag vu. It seemed that I was doing this sort of work with every team I met, and it was the sort of thing
that no one really wanted to think about. It was just the grunge work that you do when you want to start
working with your code in a controlled way, if you know how to do it. I decided then that it was worth really
reflecting on how we were solving these problems and writing them down so that teams could get a leg up
and start to make their code bases easier to live in.

A note about the examples: I've used examples in several different programming languages. The bulk of the



examples are written in Java, C++, and C. I picked Java because it is a very common language, and I
included C++ because it presents some special challenges in a legacy environment. I picked C because it
highlights many of the problems that come up in procedural legacy code. Among them, these languages
cover much of the spectrum of concerns that arise in legacy code. However, if the languages you using are
not covered in the examples, take a look at them anyway. Many of the techniques that I cover can be used in
other languages, such as Delphi, Visual Basic, COBOL, and FORTRAN.

I hope that you find the techniques in this book helpful and that they allow you to get back to what is fun
about programming. Programming can be very rewarding and enjoyable work. If you don't feel that in your
day-to-day work, I hope that the techniques I offer you in this book help you find it and grow it on your
team.
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Preface

Do you remember the first program you wrote? I remember mine. It was a little graphics program I wrote on
an early PC. I started programming later than most of my friends. Sure, I'd seen computers when I was a kid.
I remember being really impressed by a minicomputer I once saw in an office, but for years I never had a
chance to even sit at a computer. Later, when I was a teenager, some friends of mine bought a couple of the
first TRS-80s. I was interested, but I was actually a bit apprehensive, too. I knew that if I started to play with
computers, I'd get sucked into it. It just looked too cool. I don't know why I knew myself so well, but I held
back. Later, in college, a roommate of mine had a computer, and I bought a C compiler so that I could teach
myself programming. Then it began. I stayed up night after night trying things out, poring through the source
code of the emacs editor that came with the compiler. It was addictive, it was challenging, and I loved it.

I hope you've had experiences like thismdjust the raw joy of making things work on a computer. Nearly
every programmer I ask has. That joy is part of what got us into this work, but where is it day to day?

A few years ago, I gave my friend Erik Meade a call after I'd finished work one night. I knew that Erik had
just started a consulting gig with a new team, so I asked him, "How are they doing?" He said, "They're
writing legacy code, man." That was one of the few times in my life when I was sucker-punched by a
coworker's statement. I felt it right in my gut. Erik had given words to the precise feeling that I often get
when I visit teams for the first time. They are trying very hard, but at the end of the day, because of schedule
pressure, the weight of history, or a lack of any better code to compare their efforts to, many people are
writing legacy code.

What is legacy code? I've used the term without defining it. Let's look at the strict definition: Legacy code is
code that we've gotten from someone else. Maybe our company acquired code from another company;
maybe people on the original team moved on to other projects. Legacy code is somebody else's code. But in
programmer-speak, the term means much more than that. The term legacy code has taken on more shades of
meaning and more weight over time.

What do you think about when you hear the term legacy code? If you are at all like me, you think of tangled,
unintelligible structure, code that you have to change but don't really understand. You think of sleepless
nights trying to add in features that should be easy to add, and you think of demoralization, the sense that
everyone on the team is so sick of a code base that it seems beyond care, the sort of code that you just wish
would die. Part of you feels bad for even thinking about making it better. It seems unworthy of your efforts.
That definition of legacy code has nothing to do with who wrote it. Code can degrade in many ways, and
many of them have nothing to do with whether the code came from another team.

In the industry, legacy code is often used as a slang term for difficult-to-change code that we don't
understand. But over years of working with teams, helping them get past serious code problems, I've arrived
at a different definition.



To me, legacy code is simply code without tests. I've gotten some grief for this definition. What do tests have
to do with whether code is bad? To me, the answer is straightforward, and it is a point that I elaborate
throughout the book:

Code without tests is bad code. It doesn't matter how well written it is; it doesn't matter how pretty or object-
oriented or well-encapsulated it is. With tests, we can change the behavior of our code quickly and
verifiably. Without them, we really don't know if our code is getting better or worse.

You might think that this is severe. What about clean code? If a code base is very clean and well structured,
isn't that enough? Well, make no mistake. I love clean code. I love it more than most people I know, but
while clean code is good, it's not enough. Teams take serious chances when they try to make large changes
without tests. It is like doing aerial gymnastics without a net. It requires incredible skill and a clear
understanding of what can happen at every step. Knowing precisely what will happen if you change a couple
of variables is often like knowing whether another gymnast is going to catch your arms after you come out of
a somersault. If you are on a team with code that clear, you are in a better position than most programmers.
In my work, I've noticed that teams with that degree of clarity in all of their code are rare. They seem like a
statistical anomaly. And, you know what? If they don't have supporting tests, their code changes still appear
to be slower than those of teams that do.

Yes, teams do get better and start to write clearer code, but it takes a long time for older code to get clearer.
In many cases, it will never happen completely. Because of this, I have no problem defining legacy code as
code without tests. It is a good working definition, and it points to a solution.

I've been talking about tests quite a bit so far, but this book is not about testing. This book is about being able
to confidently make changes in any code base. In the following chapters, I describe techniques that you can
use to understand code, get it under test, refactor it, and add features.

One thing that you will notice as you read this book is that it is not a book about pretty code. The examples
that I use in the book are fabricated because I work under nondisclosure agreements with clients. But in
many of the examples, I've tried to preserve the spirit of code that I've seen in the field. I won't say that the
examples are always representative. There certainly are oases of great code out there, but, frankly, there are
also pieces of code that are far worse than anything I can use as an example in this book. Aside from client
confidentiality, I simply couldn't put code like that in this book without boring you to tears and burying
important points in a morass of detail. As a result, many of the examples are relatively brief. If you look at
one of them and think "No, he doesn't understandmdmy methods are much larger than that and much worse,"
please look at the advice that I am giving at face value and see if it applies, even if the example seems
simpler.

The techniques here have been tested on substantially large pieces of code. It is just a limitation of the book
format that makes examples smaller. In particular, when you see ellipses (el) in a code fragment like this,
you can read them as "insert 500 lines of ugly code here":

m_pDispatcher->register(listener);...m_nMargins++;

If this book is not about pretty code, it is even less about pretty design. Good design should be a goal for all
of us, but in legacy code, it is something that we arrive at in discrete steps. In some of the chapters, I describe
ways of adding new code to existing code bases and show how to add it with good design principles in mind.
You can start to grow areas of very good high-quality code in legacy code bases, but don't be surprised if
some of the steps you take to make changes involve making some code slightly uglier. This work is like
surgery. We have to make incisions, and we have to move through the guts and suspend some aesthetic
judgment. Could this patient's major organs and viscera be better than they are? Yes. So do we just forget



about his immediate problem, sew him up again, and tell him to eat right and train for a marathon? We could,
but what we really need to do is take the patient as he is, fix what's wrong, and move him to a healthier state.
He might never become an Olympic athlete, but we can't let "best" be the enemy of "better." Code bases can
become healthier and easier to work in. When a patient feels a little better, often that is the time when you
can help him make commitments to a healthier life style. That is what we are shooting for with legacy code.
We are trying to get to the point at which we are used to ease; we expect it and actively attempt to make code
change easier. When we can sustain that sense on a team, design gets better.

The techniques I describe are ones that I've discovered and learned with coworkers and clients over the
course of years working with clients to try to establish control over unruly code bases. I got into this legacy
code emphasis accidentally. When I first started working with Object Mentor, the bulk of my work involved
helping teams with serious problems develop their skills and interactions to the point that they could
regularly deliver quality code. We often used Extreme Programming practices to help teams take control of
their work, collaborate intensively, and deliver. I often feel that Extreme Programming is less a way to
develop software than it is a way to make a well-jelled work team that just happens to deliver great software
every two weeks.

From the beginning, though, there was a problem. Many of the first XP projects were "greenfield" projects.
The clients I was seeing had significantly large code bases, and they were in trouble. They needed some way
to get control of their work and start to deliver. Over time, I found that I was doing the same things over and
over again with clients. This sense culminated in some work I was doing with a team in the financial
industry. Before I'd arrived, they'd realized that unit testing was a great thing, but the tests that they were
executing were full scenario tests that made multiple trips to a database and exercised large chunks of code.
The tests were hard to write, and the team didn't run them very often because they took so long to run. As I
sat down with them to break dependencies and get smaller chunks of code under test, I had a terrible sense of
deasjaag vu. It seemed that I was doing this sort of work with every team I met, and it was the sort of thing
that no one really wanted to think about. It was just the grunge work that you do when you want to start
working with your code in a controlled way, if you know how to do it. I decided then that it was worth really
reflecting on how we were solving these problems and writing them down so that teams could get a leg up
and start to make their code bases easier to live in.

A note about the examples: I've used examples in several different programming languages. The bulk of the
examples are written in Java, C++, and C. I picked Java because it is a very common language, and I
included C++ because it presents some special challenges in a legacy environment. I picked C because it
highlights many of the problems that come up in procedural legacy code. Among them, these languages
cover much of the spectrum of concerns that arise in legacy code. However, if the languages you using are
not covered in the examples, take a look at them anyway. Many of the techniques that I cover can be used in
other languages, such as Delphi, Visual Basic, COBOL, and FORTRAN.

I hope that you find the techniques in this book helpful and that they allow you to get back to what is fun
about programming. Programming can be very rewarding and enjoyable work. If you don't feel that in your
day-to-day work, I hope that the techniques I offer you in this book help you find it and grow it on your
team.
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